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For a simple model of chaotic dynamical systems with a large number of degrees of freedom, we find that
there is an ensemble of unstable periodic orbits �UPOs� with the special property that the expectation values of
macroscopic quantities can be calculated using only one UPO sampled from the ensemble. Evidence to support
this conclusion is obtained by generating the ensemble by Monte Carlo calculation for a statistical mechanical
model described by a space-time Hamiltonian that is expressed in terms of Floquet exponents of UPOs. This
result allows us to interpret the recent interesting discovery that statistical properties of turbulence can be
obtained from only one UPO �G. Kawahara and S. Kida, J. Fluid Mech. 449, 291 �2001�; S. Kato and M.
Yamada, Phys. Rev. E 68, 025302�R� �2003��.
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A wide range of systems, including fluid turbulence and
ecosystems, can be described by chaotic dynamical systems
�CDSs� with a large number of degrees of freedom. Because
the evolution equations describing them are nonlinear and
possess many degrees of freedom, analyses employing vari-
ous theoretical tools fail. For instance, it is difficult to char-
acterize quantitatively the intermittency of fluid turbulence
using perturbative expansion methods applied to the Navier-
Stokes equation �1�.

In contrast, for CDSs consisting of assemblies of mol-
ecules at equilibrium, equilibrium statistical mechanics pro-
vides a powerful framework to predict macroscopic proper-
ties without the need to analyze a Hamiltonian equation for a
large number of molecules. The success of equilibrium sta-
tistical mechanics relies on its probabilistic description: In
order to predict macroscopic properties, the exact probability
distribution for states is not needed. Rather, the existence of
many degrees of freedom allows a tractable distribution to
reproduce macroscopic properties correctly. When consider-
ing macroscopic properties of a CDS with many degrees of
freedom, it is tempting to think that a probabilistic approach
other than analyzing evolution equations can be employed by
finding a useful probability measure for the system.

Although it would be extremely difficult to find a useful
measure for general CDSs, it was suggested recently that an
ensemble of states that describes macroscopic properties of
CDSs can be constructed from a special unstable periodic
orbit �UPO� �2,3�. The first study of such a UPO demon-
strated that the spatial profiles of the mean and variance of
the velocity in minimal wall turbulence can be extracted
from only one UPO of the Navier-Stokes equation �2�. Sub-
sequently, the scaling exponents of velocity fluctuations,
which characterize the intermittency of a turbulent velocity

field, was found to be obtained from only one UPO in the
GOY shell model �3�.

To obtain both of these interesting results, the UPOs were
found in numerical computations such as the Newton-
Raphson method applied to a function of 15 422 variables
�2� and following the destabilization of a limit cycle resulting
from a bifurcation process in the GOY model with
24 degrees of freedom �3�. Because there are other UPOs
which yield properties that differ from those of the special
UPOs, it can be considered that these special UPOs were
selected out of infinitely many UPOs under some criterion.
However, such a criterion for choosing UPOs is still un-
known, because in the previous works the initial value for
the Newton-Raphson method and the path of the destabiliza-
tion of the limit cycle were found by trial and error. Given
this situation, the objective of the present work is to find the
criterion to choose special UPOs such that macroscopic
properties can be obtained with high accuracy even when
only one UPO element of the ensemble is used.

In this Brief Report, we present analysis in which such a
UPO ensemble is obtained for a CDS with many degrees of
freedom. Note that here, the term “macroscopic quantities”
refers to quantities obtained by taking the average over many
degrees of freedom of the system. Furthermore, the term
“macroscopic properties” is used to mean the leading terms
of the expectation values of the macroscopic quantities with
respect to the natural invariant measure when the number of
degrees of freedom is large.

A. Model. Here, we explain the model analyzed in the
present work. First, we note that it is not necessary to study
turbulence for our present purpose. Rather, it may be prefer-
able to analyze a simple model for which many UPOs can be
found easily. With this idea, we study a coupled map lattice
�CML� proposed by Sakaguchi �4�, which we now describe.
Let �xi ,�i�� �−1,1�� �−1,1� be dynamical variables defined
on the ith site of a one-dimensional lattice consisting of N
lattice points numbered from 0 to N−1 �5�. For later conve-
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nience, the variable st
i, which is called the “spin,” is defined

as

si � �+ 1 �− 1 � xi � �i� ,

− 1 ��i � xi � 1� .
� �1�

The time evolution of �xi ,�i� is given by

�xt+1
i,�

t+1
i� = � f�xt
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� �2�

for i= t+1 �mod 2� and �xt+1
i ,�
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i�= �xt

i ,�
t
i� for i= t �mod

2�. Here k is a positive parameter, and the local map
f�xt

i ,�
t
i� is the Bernoulli map, given by

f�xt
i,�

t
i� �

2�xt
i + st

i�
1 + st

i�
t
i

− st
i. �3�

Note that the discontinuous point of the map f�x ,�� is lo-
cated at x=�, and the spin variable, si, is identified to a
symbol of the symbolic dynamical system for the local map
f�xi ,�i�. Hereafter, we call the above CML the “Bernoulli
CML” and denote it Xt+1=F�Xt�, where Xt��xt

i ,�
t
ii=0

N−1.
The Bernoulli CML has interesting features, as demon-

strated by Sakaguchi �4�. First, the natural invariant measure
for spin configurations coincides with the canonical distribu-
tion for an Ising spin Hamiltonian. In order to express this
fact explicitly, we define J�s� as the set of states �xi ,�ii=0

N−1

corresponding to the spin configuration s��sii=0
N−1. Then, it is

found that the natural invariant measure on the set J�s� can
be written as �(J�s�)=const�exp��k /2��i=0

N−1sisi+1�. Further-
more, when the initial probability distribution of states is the
natural invariant measure, it is known that the transition
probability T�s �s�� from one spin configuration s to another
s� is given by T�s2t �s2t+1�=�i=0

N/2−1�1+s2t+1
2i+1�2t+1

2i+1� /2,
T�s2t+1 �s2t+2�=�i=0

N/2−1�1+s2t+2
2i�

2t+2
2i� /2.

B. A UPO ensemble. We now proceed to construct a UPO
ensemble for the Bernoulli CML with the property that the
expectation values of macroscopic quantities are obtained
with high accuracy even when only one UPO element of the
ensemble is used. As the first step in this construction, we
demonstrate that there is a one-to-one correspondence be-
tween symbol sequences and UPOs. Suppose that a symbol
sequence �s���s0 ,s1 , . . . ,sp−1� is given. We then attempt to
find a periodic point X0��x0

i ,�
0

ii=0
N−1 corresponding to �s�.

The N-tuple ��0
ii=0

N−1 can be determined directly from the
given symbol sequence by definition. A component of
Xp�Fp�X0� is given by xp

i=�t=0
p/2−1a2t

ix
0

i

+�t�=1
p/2−1�t=t�

p/2−1a2t
is

2t�−2
i�a

2t�−2
i−1�+sp−2

i�a
p−2

i−1�, where it is
assumed that p is an even number and at

i�2/ �1+st
i�

t
i�.

Because �t=0
p/2−1at

i�1 for an arbitrary symbol sequence, we
can uniquely determine the point satisfying the periodicity
condition x0

i=xp
i. In this way, we can find a point X0

��x0
i ,�

0
ii=0

N−1 such that X0=Xp for a given symbol sequence
�s�. Conversely, it should be confirmed that the symbol se-
quence generated from the point X0 coincides with �s�. We
numerically confirmed this for 106 symbol sequences gener-
ated randomly. On the basis of these results, we conclude

that there exists a single UPO corresponding to an arbitrary
symbol sequence.

Because of the one-to-one correspondence between UPOs
and symbol sequences, we can obtain a UPO ensemble
through the construction of an ensemble of symbol se-
quences. One natural possibility for a probability measure
�PM� on symbol sequences is the frequency distribution of
symbol sequences in the case that the initial probability dis-
tribution of states is given by the natural invariant measure.
The frequency distribution of a symbol sequence �s� is ex-
pressed as P��s��=�(J�s0�)T�s0 �s1�T�s1 �s2�¯T�sp−1 �sp�. Al-
though this expression appears to take a simple form, it is not
easy to derive the natural invariant measure for most dy-
namical systems. In order to analyze a wide variety of dy-
namical systems, it is convenient to use a more tractable PM
that yields the same macroscopic properties as those ob-
tained from P��s��. As one such possibility, we consider the
PM Q��s�� obtained by replacing the natural invariant mea-
sure � in P��s�� with a constant Z−1. This PM can be rewrit-
ten as

Q��s�� = exp�− ln�D�u�Fp�X0���/Z . �4�

Here, �D�u�Fp�X0�� is the absolute value of the product of the
eigenvalues in the expanding directions of the Jacobi matrix
for the map given by p iterations of the coupled map F
evaluated at the periodic point X0 corresponding to the sym-
bol sequence �s�, and Z is a normalization constant. The
expression of frequency distribution of a symbol sequence
has been obtained in Ref. �6�. The PM defined by Eq. �4� can
be calculated more easily for any CDS than that defined by
P��s��.

C. Numerical demonstration. Now we describe the nu-
merical demonstration that a macroscopic property for the
CML can be determined with high accuracy even when only
one UPO element of the ensemble determined by Eq. �4� is
used to provide ensembles of states. First, we note that the
sampling of UPOs according to Eq. �4� can be carried out
using the Monte Carlo method. In this procedure, a symbol
sequence �s� is regarded as a spin configuration on a
�1+1�-dimensional p�N lattice, where p and N correspond
to the time and space directions, respectively. In addition, the
PM given by Eq. �4� is of the same form as the canonical
distribution. Hence, the UPO ensemble we seek can be gen-
erated with the Metropolis algorithm, regarding
ln�D�u�Fp�X0�� as the “Hamiltonian” of a �1+1�-dimensional
Ising model with spins �s�. In order to obtain UPOs, periodic
boundary conditions are imposed at the boundaries of the
lattice in the time direction, t=0 and t= p−1.

For each UPO of period p, an ensemble of spin configu-
rations s, which can be regarded as an ensemble of states,
can be constructed by assuming the equal weight probability
1 / p on each spin configuration of the sequence �s� corre-
sponding to the UPO. Using this ensemble associated with
one UPO, we consider the ensemble average of the macro-
scopic quantity −�i=0

N−1sisi+1 /N, given by �N�
−�t=0

p−1�i=0
N−1st

is
t
i+1 / �Np�. In Fig. 1, the average and standard

deviation of �N calculated from 50000 samples of UPOs gen-
erated by the Monte Carlo method are displayed for several
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values of N. It is seen that as N increases, the standard de-
viation approaches zero and the average value of �N con-
verges to −tanh�k /2�, which is the value calculated from the
natural invariant measure ��J�s��. This implies that in the
limit N→�, the expectation value of −�i=0

N−1sisi+1 /N with re-
spect to the natural invariant measure can be calculated from
the ensemble of states obtained from only one UPO, because
the discrepancy between the value calculated from one UPO
and that from another UPO can be ignored.

D. Single-UPO description. We consider here the mecha-
nism to make it possible to describe macroscopic properties
using only one UPO. First, let us consider relaxation pro-
cesses to the steady state provided that a smooth initial mea-
sure is given. Then, the expectation value of a quantity that is
a function of a symbol, A�s�, converges to the same value in
a relaxation time �A, irrespective of initial measures. Thus,
the asymptotic value for the case that the initial measure is
assumed to be flat, where the frequency distribution of the
symbol sequence is equal to Q��s��, coincides with the value
for the case that the initial measure is given by the natural
measure �, whose value is nothing but the expectation value
of A�s� with respect to �. This is expressed simply as
�A�st��Q���s�Q��s��A�st���A�s�����s�(J�s�)A�s� in the
time range t	�A.

Next, by using this generic property, we can estimate the
expectation value of the time average of A�s� as
��t=0

p−1A�st� / p�Q��t=0
�A−1�A�st��Q / p+ �p−�A��A�s��� / p. When

the period p is taken to be long compared to the relaxation
time �A, we obtain ��t=0

p−1A�st� / p�Q��A�s���.
Finally, we consider the case where A�s� is a macroscopic

quantity such as �N. The law of large numbers asserts that
fluctuations of such a quantity become negligible when the
degrees of freedom is large and steady state is settled. Hence,
for almost all symbol sequence �s� sampled according to
Q��s��, �t=0

p−1A�st� / p���t=0
p−1A�st� / p�Q.

Consequently, �t=0
p−1A�st� / p��A�s��� for almost all �s�

with respect to Q��s��. Because of one-to-one correspon-
dence between UPOs and symbol sequences, the time aver-
age along single UPO sampled according to Q��s�� provides
a good approximate value of �AN�s���. The discussion pre-
sented above shows that many degrees of freedom and the

law of large numbers applied to macroscopic quantities are
essential for the single-UPO description.

E. Interpretation of the UPO description of turbulence.
We now interpret the UPO description of turbulence �2,3�
based on our result. In particular, we discuss the relationship
between the UPOs employed in Refs. �2,3� and the UPOs
sampled according to Eq. �4�.

In the methods of searching for UPOs employed in the
two previous works, a trial initial state point is first chosen
near a true periodic point X0 in some way, and the time
development of the state is traced by numerical integration of
the governing equation. Then, the initial point is recognized
as a periodic point if the distance between the orbit and the
trial initial state point at the time that the orbit returns closest
to the trial initial state point is less than some threshold value

.

For simplicity, suppose that a set of trial initial state points
are scattered within a hypersphere of radius 
0 centered at a
periodic point X0 of period p. Then, this set expands in the
unstable direction as the system evolves in time. Specifically,
assuming that du is the dimension of the unstable manifold
and 
0 is sufficiently small, the volume of the set in the
unstable direction becomes 
0

du�D�u�Fp�X0�� after one period
of motion along the UPO starting from X0. Hence, the prob-
ability that the distance between the orbit and the trial initial
state point after one period of motion remains less than the
threshold 
 is estimated as 
du / (
0

du�D�u�Fp�X0��). This im-
plies that the probability of finding numerically an approxi-
mate periodic point around X0 is proportional to
�D�u�Fp�X0��−1, which is equal to the quantity appearing in
Eq. �4�. From these considerations, we conjecture that the
UPOs found in the previous works �2,3� were sampled from
a probability measure that takes a form similar to Eq. �4� for
turbulence.

In order to demonstrate the correspondence between the
single-UPO description of turbulence and our result that the
expectation value of a quantity averaged over many degrees
of freedom can be obtained from only one UPO, one task
remains: We must show that the quantities analyzed in Refs.
�2,3� were also averaged over many degrees of freedom.
First, the quantities investigated in the case of wall turbu-
lence �2� were averaged on a plane parallel to the walls.
Next, consider whether the scaling exponents of the turbulent
velocity field analyzed in Ref. �3� can be expressed in an
averaged form over many degrees of freedom. By making
use of notions on the energy cascade and self-similarity in
the inertial subrange, the scaling exponent of order q, �q,
can be derived as �q=q /3−ln��� j+1 /� j�q/3�, where � j is the
energy dissipation rate at the jth shell �7�. Self-similarity
makes the statistical average �·� replaceable with the av-
erage over shells in the inertial subrange as ��� j+1 /� j�q/3�
��1/N�� j=0

N−1�� j+1 /� j�q/3. Thus, the scaling exponent �q can
be expressed as a quantity averaged over identically distrib-
uted variables.

One may wonder whether the numbers of statistically in-
dependent variables in the systems studied in Refs. �2,3� are
sufficiently large to ensure that the UPOs sampled according
to Eq. �4� should actually to yield values close to the true

FIG. 1. Averages �solid circles� and standard deviations �error
bars� of �N evaluated from 50 000 samples of UPOs for the case
N=2n�2�n�12�, k=1, and p=64. The broken line represents the
exact value in the limit N→�, −tanh�1/2�.
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expectation value. However, as seen in Fig. 1, the results for
the cases N=8 and 16 indeed provide good approximations
of the true expectation value. Therefore, in the turbulence
problems, we believe that the numbers of statistically inde-
pendent variables are sufficient to provide good approxima-
tions.

F. Discussion. The previous works, Refs. �2,3�, and the
above interpretation show that a sample UPO chosen with
the weight �D�u�Fp�X0��−1 can describe macroscopic proper-
ties of turbulence. It suggests that the single-UPO description
has a wide range of application.

Let us discuss the interrelationship between the present
work and other studies. The statistical analysis of symbol
sequences for orbits in dynamical systems is called the “ther-
modynamic formalism” �8,9�. The Monte Carlo calculation
of Eq. �4� can be regarded as a numerical realization of the
thermodynamic formalism for the Bernoulli CML. In similar
studies, the explicit construction of the space-time Hamil-
tonian for spatially extended dynamical systems was pro-
posed in Ref. �10�, though its construction is based on a
natural invariant measure that happened to be obtained for
specific models.

In hyperbolic dynamical systems, employing the
periodic orbit expansion, the natural invariant measure �

on a set R in phase space can be expressed as ��R�
=limp→�� j�D�u�Fp�Xj��−1, where the sum is taken over all the
fixed points Xj of Fp, i.e., UPOs, in the set R �11–13�. In
related studies, some CDSs with many degrees of freedom
have been analyzed using the periodic orbit expansion tech-
nique �14–16�. From this expanded form, it turns out that the
weight of a UPO is proportional to limp→��D�u�Fp�Xj��−1. Al-
though this expression reminds us the form given in Eq. �4�,
the limit p→� shouled be taken to obtain the precise natural
measure. In contrast to that, our results suggest that the pe-
riodic orbit expansion with a finite period is sufficient to
describe macroscopic properties. Note that it is an important
open qeustion to evaluate precisely the period p for the
single-UPO description.

In summary, we have demonstrated that the macroscopic
properties of the Bernoulli CML can be calculated with high
accuracy using only one UPO sampled from the special UPO
ensemble described by Eq. �4�.
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